
PLANE STRAIN IN THE ASYMMETRIC THEORY 

PMM Vol. 31, No. 3, 1967, pp. 543.547 

A.N. BULYGIN and E.V. KUVSHINSKII 
(Leningrad) 

(Received April 25,1966 1 

OF ELASTICITY 

The majority of works on the asymmetric theory of elasticity is devoted to the foundation of 
the theory and the derivation of fundamental relationships [l to 51. Equilibrium equationa, 
Hooke’s laws, and Saint Venant conditions extended to the couple-stress interaction case 
are obtained in these works. Neglecting volume force distributions and moments, the aqui- 
librium equations are obtained aa follows 

aa,,= %k 
axk ’ -3T+*7l7&,,=0 

k 
(0.11 

Here ulk is the asymmetric stress tensor f”fk f ok,), &k the micro-moments tensor# +,,,u 
the Levi-Civita tensor. The generalized Hooke s laws are taken as 

5 lk = hEnnslk f (c’ + T) E,, + (P - r) E,,, E,, = 2 - f-2, EIk, (0.21 
k 

Here u is the displacement vector, 0 the rotation vector, which is an inde endent char- 
acteristic of the strain in the asymmetric theory of elasticity X, @, y; 7, 7, b are material 

characteristics of the medium. 
The generalized Saint Venant conditions become: 

(0.31 

Much less attention has been paid to the development of mathematical methoda of aolv- 
ing the equations of the asymmetric theory of elasticity, which is an essential for elucfda- 
tion of the specifics of the effects and the domain of applicability of this theory. 

Taking account of the enormous mathematical difficultfea originating in the solution of 
boundary value problems of the asymmetric theory of elasticity, we may proceed either by 
seeking correction terms to the solutions of problems of the ordinary theory of elasticity, or 
by developing exact methods, but for particular canes of body strain. The moat important 
such strain case (as in the ordinary theory of elasticity) is the state of plane atrain. The 
fundamental equations of plane strain have been obtained in [6]. Their solution is given 
there by the introduction of two fourth order functions. Their internal oompatibilfty for cant- 
pliance with the generalized Beltrami-Mitchell conditiona producea an additional dfffleuIg 
in finding the solution. A solution is obtained herein fn terms of a fourth and aacond order 
function, needing no additional compatibility; a complex -representation of this solution is 
given, and the question of separation of the boundary conditiona is formulated. 

1. Plane atrain equations in the asymmetric theory of elamtioity. 
We shall designate the strain plane if 

% = s (4 v), uy = n (5, Y), u* = 0, 61, = 0, 0, = 0, Q, = Q (2, 9) (1.1) 

As is seen from (1.11, all the sections of an infinitely long prismatic body are defnred 
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identically in plane strain, i.e., a I! particles are displaced in a plane perpendicular to the 
z-axis, and are rotated around the same axis. Taking account of (1.1) in (0.2), we obtain 
the generalized Hooke’s laws for the plane strain case: 

(1.2) 

Here w is the rotation of a portion of the medium as a whole. The equilibrinm Eqs. (0.1) 
simplify substantially if the relationships (1.2) are taken into account 

ao,, aa as 
ax+ay -2x=0 a%u 

9 *+Fzo, 
abr akv -- ax+ay+a,,-ax~= 0 (1.3) 

The remaining equilibrinm equations are satisfied identically. As regards the generalized 
Beltrami-Mitchell conditions, only three are retained: 

(1.4) 

If (1.3) is taken into account, then they easily rednce to 

A (or. + cW) = 0 

Therefore, Eqs. (1.3) and (1.4) are the fundamental plane strain eqnatjons in the asym- 
metric theory of elasticity. Let us note that such quantities as o,, = o(a 
Poisson coefficient), /&a and px, are found after the problem has been ao 1 

X + 17~~) b is the 
vcd, l.c., in order 

for the body strain to be planar, definite o,,, /txa and /L,,* must be applied(*). 

2. Solution of the G nations. Let us seek the solution of (1.3) and (1.4) in terms 
of some auxiliary fnnctions 9 and F, which represent the stresses as follows: 

a2u a2F aw a2F 
d xx =-%T-- ax ay d l/Y = T+aray 

:._a~+‘$’ 
a2u a2F (2.1) 

G XY %Jx=--- asay ay2 

It is easy to see that the first two equilibrium equations are satisfied identically by vir- 
tue of (2.1). The last two Eqs. of the system (1.5) will be satisfied identically if they are 
considered as representations of psx and F(=,, in terms of the functions U and F according to 

(2.1) 
IL = $(i-QAF)-+-&AU (2.2) .7X 

*) If necessary to take account of volume forces and moments, it must be kept in mind that 
in plane strain they must have the form 

X = X (.r, y), Y = Y (I, y), 2 = 0, m, = 0, m,, = 0, m, = m (2, br) 
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The first Eq. of (1.5) asserts that the quantity U is a biharmonic function 
AAU = 0 (2.3) 

and the last relationship of the system (1.3) leads to the Eq. 

A(flzAF-F) =O (2.4) 
which may be replaced by an equation of Helmholtz type (*) 

KzzAF - F = 0 (2.5) 
Taking account of (2.5), as well as of the fact that %vAU is a harmonic function, and 

therefore, connected with its conjugate Q by means of the relationships 

aQ -=- ax +g AU, 
aQ va -=- 
aY 2 azAU 

(2.2) may be written as 

P zx 
=-&F-I-Q), P,,=&+Q) 

Therefore, under conditions (2.3) and (2.5), the Expressions (2.1) and (2.6) yield the 
general solution of Eqs. (1.3) and (1.5). Incidentally,the meaning of the function F, as a 
quantity proportional to the asymmetric part of the stress tensor 

F = Kz2 (Q,.~ - Q& 
follows from the expressions for aW and or,= taking account of (2.5). 

Expressions (2.1) and (2.6) may be written in complex form if the Goursat formula for 
the biharmonic function is utilized [7]: 

2cJ=-zcp(z)+z~+X(z)+X(z) 

Here q(z) and x(t) are arbitrary analytic functions. 
are 

u,, + Qyy = 2 ]‘D (z) + C(z)1 

d 
ull - czr + 2ia_/ = 2 [ZW (2) + I (z)] $ 

Compactly written, (2.1) and (2.6) 

(@(z) = ‘p’ (z)) 

2-&(Z$+izj 

=uu - axx +2icvZ=2[~@‘(Z)+Y(z)]-2i$(~+i~j 

hv - ih, 
- aF 3F 

=2VW(z)+ F-ix (Y (z) = x” (z) = q+(z)) (2.7) 

It follows from the first two relationships of (2.7) that 

G - ioxy = D(z) + q(z) + L?i? (z) + ‘Y(Z) + 2 (g - i -$J-) (2.8) 
WI 

This expression may be integrated with respect to Z, and expression obtained for the 
principal stress vector 

(2.9) 

From (1.2) an expression is easily obtained for the displacement by neglecting the dis- 
placement of the body as a whole 

aF 
2p(u+iu)=xlp(z)-z~-_)-_+i az (2.10) 

and an expression for the angle of rotation n from the relationship for p,, without taking 
accoont of rotation of the body as a whole 

2861 = F - vi [fD (z) - CD (z)] (2.11) 
The relationships (2.8) (or (2.9)), (2.10) and (2.11) end the last relationship in (2.7) 

yield expressions for the stress, the angle of rotation, the displacement and the micromo- 
ments in terms of two arbitrary analytic functions cP( Z) and X(Z) and a function F of Hehu- 
holtz type. It is easy to see that they are a generalization of the known Kolosov-Muskhel- 
ishvili relationships in the ordinary theory of elasticity. 

l ) The solution of (2.4) differs from the solution of (2.5) by a harmonic function which may 
be included in II. 
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3. Fundamental problems. Separation of boan dary conditions for a 
h a1 f-p 1 an e. Problems of the ordinary theory of elasticity separate into three kinds: 

1) Strssses are given on the contour (dynamic condition) 
2) Displacements are given on the contour (kinematic condition), 
3) Stresses are given on part of the contour, and displacements on the rest (mixed con- 

dition). 
Such a classification for the problems of the ordinary theory of elasticity is natural 

since the state of stress is described by only the stress tensor, and the state of strain by 
the strain tensor (fieId of displacements). The state of stress in the asymmetric theory of 
elasticity is described by two dynamic quantities (the stress tensor or& and the micromo- 
ments tensor prr ), and the state of strain by two kinematic quantities ftbe displacement 
field tt and the field of angles of rotation h). As has been shown in (2.1) to (2.11), these 
four quantities are expressed in terms of three arbitrary functions, two of which are harmo- 
nic (cPl#) and one F is of Helmholtz type, hence, three out of the four arbitrary quantities 

must be given on the contour to describe completely the state of stress or strain in the 
asymmetric theory of elasticity. 

By analogy with the ordinary theory of elasticity, let us designate the first fundamental 
problem of the asymmetric theory of elasticity that for which the stresses and micromoments 
(dynamic conditions) are given on the contour, the second as that for which the displace- 
manta and angle of rotation (kinematic conditions) are given on the contour. Besides these 
fundamental problems, mixed problems fin the sense that partly dynamic, and partly kine- 
matic quantities are given on the contour, as say: o) stresses and angle of rotation, 6) dis- 
placements and mi~omoments) may be formulated in the asymmetzic theory of elasticity, 
and we shall designate them as mixed problems of the second kind in the asymmetric theory 
of elasticity in contrast to the mixed problems of the first kind when one quantity is given 
on one part of the contour, and the other quantity is given on the other. Such problems in the 
asymmetric theory of elasticity are also greater in number than in the ordinary theory of 
elasticity, but they will not yet be considered. 

The solution of the boandary value problems of the asymmetric theory of elasticity leads 
to greater mathematical difficulties as compared with the solution of boundary value prob- 
lems of the ordinary theory of elasticity. The essential difficulty in boundary value problems 
of ths asymmetric theory of elasticity is due to the “entanglement” of the boundary condi- 
tiona for the harmonic fnnctions cp (z), + (2) and the Helmholtz type function F. 

However, for the half-plane the bonndary conditions may be unraveled, i.e., the boundary 
value problem to determine ‘p (z), I@ (z) may be formulated separately, and to determine F 
sepsrately. Let as show this by an example of the first fundamental problem of the aeymme- 
tric theory of elasticity, whose boundary value problems have the form 

-- 
N (5) - iT (4 = Q (4 -t Q,(z) + zw (4 + w (4 + -& (% - i g jv4 

M (4 = v I@ (4 + -11 + g lll=o 

(3 
. 
1) 

Hem N(Z), T(x), M (.v) are the boundary values of err ox , pIyt respectively, where it 
is considered that the body occupies the lower half-plane. de first relationship of (3.1) is 

the boundary value problem of the ordinary theory of elasticity to determine @ and ‘It, if it 
is assnmed that the boundary value of the last member of this equation is known. We fid 
therefrom 

i 
cpo(z)=--~ I 

Fp N(r)-iiT(x)dX 
x-2 

Substftntfng (3.2) into the second relatf&:hip of (3.1). we obtain 
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(3.3) 

Condition (3.3) is also a boundary condition to determine F. Knowledge of the latter re- 
duces the solution of the first fundamental problem of the asymmetric theory of elasticity 
to the solution of the fundamental problem of the ordinary theory of elasticity, but with 
other boundary conditions, as is seen from the first relationship of (3.1). Analogously, the 
boundarv conditions for the remaining boundary value problems of the asymmetric theory of , 
elasticity for a half-plane may be u&aveled. Let us present the form of the boundary 
ditions to find F when on the contour are given: 

the displacements and the angle of rotation u (~1, u (xl, n (21 

the stresses and the angle of rotation N (z), T (xl, n (zl 

r aaF aaF* 
L axa -l-F ---z&y+ v 1 1 = i (00 (2) - 00 (I)) + 

u=o 
- $&-2(x)‘] 

the displacements and the micromoments IL f z), u (~1, M f z) 

[ 

av 
- + gJ + ” ggd axa ay = x [ + kf (4 - (90” + cpo”)] 

Here @, and ‘pu denotes throughout the solution of the corresponding problems 01 
dinary theory of elasticity. _ 

con- 

(3.41 

(3.51 

(3.6) 

the or- 

The obtained boundary conditions (3.31 to (3.61 for F differ essentially from the known 
boundary value problems for Helmholtz type equations. Finding F with the bonndsry condi- 
tions (3.3) to (3.6) is a specific difficulty of the solution of problems of the asymmetric 
theory of elasticity and requires special consideration. 
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