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The majority of works on the asymmetric theory of elasticity is devoted to the foundation of
the theory and the derivation of fundamental relationships [1 to 5]. Equilibrium equations,
Hooke’s laws, and Saint Venant conditions extended to the couple-stress interaction case
are obtained in these works. Neglecting volume force distributions and moments, the equi-
librium equations are obtained as follows
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Here 0y, is the asymmetric stress tensor (0y; # 0y/), lif the micro-moments tensor, Sy,
the Levi-Civita tensor. The generalized Hooke’s laws are taken as
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Here u is the displacement vector, {} the rotation vector, which is an independent char~
acteristic of the strain in the asymmetric theory of elasticity A, , ¥, 7, 7, & are material
characteristics of the medium.

The generalized Saint Venant conditions become:
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Much less attention has been paid to the development of mathematical methods of solv~
ing the equations of the asymmetric theory of elasticity, which is an essential for elucida-
tion of the specifics of the effects and the domain of applicability of this theory.

Taking account of the enormous mathematical difficulties originating in the solution of
boundary value problems of the asymmetric theory of elasticity, we may proceed either by
seeking correction terms to the solutions of problems of the ordinary theory of elasticity, or
by developing exact methods, but for particular cases of body strain. The most important
such strain case (as in the ordinary theory of elasticity) is the state of plane strain. The
fundamental equations of plane strain have been obtained in [6]. Their solution is given
there by the introduction of two fourth order functions. Their internal compatibility for com=~
pliance with the generalized Beltrami-Mitchell conditions produces an additional difficualty
in finding the solution. A solution is obtained herein in terms of a fourth and second order
function, needing no additional compatibility; a complex representation of this solution is
given, and the question of separation of the boundary conditions is formulated.

1. Plane strain equations in the asymmetric theory of elasticity.
We shall designate the strain plane if

Uy =u(z, y), uy=v(z, py, u, =0, Q=0 R,=0, Q, =0Q(z p (11
As is seen from (1.1), all the sections of an infinitely long prismatic body are deformed
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identically in plane strain, i.e., all particles are displaced in a plane perpendicular to the
z-axis, and are rotated around the same axis. Taking account of (1.1) in (0.2), we obtain
the generalized Hooke’s laws for the plane strain case:
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Here w is the rotation of a portion of the medium as a whole. The equilibrium Eqs. (0.1)

simplify substantially if the relationships (1.2) are taken into account
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The remaining equilibrium equations are satisfied identically. As regards the generalized
Beltrami-Mitchell conditions, only three are retained:
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If (1.3) is taken into account, then they easily reduce to
A(s,, +0,)=0 (1.5)
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Therefore, Eqs. (1.3) and (1.4) are the fundamental plane strain equaijons in the asym-
metric theory of elasticity. Let us note that such quantities as 0,, =0 (0,, + 0,,) (0 is the
Poisson coefficient), 1, and u . are found after the problem has been so’ved, i.e., in order
for the body strain to be planar, definite 0, ji,, and [1,, must be applied(*).

2.Solution of the equations. Let us seek the solution of (1.3) and (1.4) in terms
of some auxiliary functions U and F, which represent the stresses as follows:
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It is easy to see that the first two equilibrium equations are satisfied identically by vir-
tue of (2.1). The last two Egs. of the system (1.5) will be satisfied identically if they are
considered as representations of j1,, and jt,, in terms of the functions U and F according to

(2.1) 2 d
bep = 95 (KPAF) — 5= 52 AU (2.2)
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*) If necessary to take account of volume forces and moments, it must be kept in mind that
in plane strain they must have the form
X=X(-T1!/), Y=Y(Iy!/),z=0,mx=0,m“=07 mz=m(31y)
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The first Eq. of (1.5) asserts that the quantity U is a biharmonic function

AAU =0 (2.3)
and the last relationship of the system (1.3) leads to the Eq.
A (K%AF — F) = 0 (2.4)
which may be replaced by an equation of Helmholtz type (*)
KEAF — F =0 (2.5)

Taking account of (2.5), as well as of the fact that %4 AU is a harmonic function, and
therefore, connected with its conjugate @ by means of the relationships
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Therefore, under conditions (2.3) and (2.5), the Expressions (2.1) and (2.6) yield the
general solution of Eqs. (1.3) and (1.5). Incidentally,the meaning of the function F, as a
quantity proportional to the asymmetric part of the stress tensor

F=K2(s y——syx)
follows from the expressions for 0, and 0, taking account of (2. 5).

Expressions (2.1) and (2.6) may be written in complex form if the Goursat formula for

the biharmonic function is utilized [7]:

20 =20 (2) + 29 (2) + % (2) + 1 (2)

Here ¢(z) and ¥ (2) are arbitrary analytic functions. Compactly written, (2.1) and (2.6)
are
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It follows from the first two relationships of (2.7) that
oF . OF
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This expression may be integrated with respect to x, and expression obtained for the
principal stress vector
, . — . 9F  OF
HEX+iY) =9 () +29° () +9() + 55— 55~ (2.9)
From (1.2) an expression is easily obtained for the displacement by neglecting the dis-
placement of the body as a whole
] — aF oF (2.10
20 (u 4 i0) = %@ (2) — 29" (2) — $(2) — 5~ +i 2.10)
and an expression for the angle of rotation {} from the relanonshlp for g, without taking
account of rotation of the body as a whole
20Q = F — vi [@ (2) — D (2)} (2.11)
The relationships (2.8) (or (2.9)), (2.10) and (2.11) and the last relationship in (2.7)
yield expressions for the stress, the angle of rotation, the displacement and the micromo-
ments in terms of two arbitrary analytic functions 9(2z) and ¥ (z) and a function F of Helm-
holtz type. It is easy to see that they are a generalization of the known Kolosov«Muskhel-
ishvili relationships in the ordinary theory of elasticity.

*) The solution of (2.4) differs from the solution of (2.5} by a harmonic function which may
be included in U.
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3. Fundamenta!l problems. Separation of boundary conditions for a
half-plane. Problems of the ordinary theory of elasticity separate into three kinds:

1) Stresses are given on the contour (dynamic condition)

2) Displacements are given on the contour (kinematic condition),

3) Streases are given on part of the contour, and displacements on the rest {mixed con-

dition).

Such a classification for the problems of the ordinary theory of elasticity is natural
since the state of stress is described by only the stress tensor, and the state of strain by
the strain tensor {field of displacements). The state of stress in the asymmetric theory of
elasticity is described by two dynamic quantities (the stress tensor gy, and the micromo-
ments tensor ji;, ), and the state of strain, by two kinematic quantities (the displacement
field u and the field of angles of rotation $)). As has been shown in (2.7) to (2.11), these
four quantities are expressed in terms of three arbitrary functions, two of which are harmo-
nic (PV) and one F is of Helmholtz type, hence, three out of the four arbitrary quantities

OS> Py U, R
must be given on the contour to describe completely the state of stress or strain in the
asymmetric theory of elasticity.

By analogy with the ordinary theory of elasticity, let us designate the first fundamental
problem of the asymmetric theory of elasticity that for which the stresses and micromoments
(dynamic conditions) are given on the contour, the second as that for which the displace-
ments and angle of rotation (kinematic conditions) are given on the contour. Besides these
fundamental problems, mixed problems (in the sense that partly dynamic, and partly kine-
matic quantities are given on the contour, as say: a) stresses and angle of rotation, b) dis-
placements and micromoments) may be formulated in the asymmetsic theory of elasticity,
end we shall designate them as mixed problems of the second kind in the asymmetric theory
of elasticity in contrast to the mixed problems of the first kind when one quantity is given
on one part of the contour, and the other quantity is given on the other. Such problems in the
asymmetric theory of elasticity are also greater in number than in the ordinary theory of
elasticity, but they will not yet be considered.

The solution of the boundary value problems of the asymmetrie theory of elasticity leads
to greater mathematical difficulties as compared with the solution of boundary value prob-
lems of the ordinary theory of elasticity. The essential difficulty in boundary value problems
of the asymmetric theory of elasticity is due to the ‘“‘entanglement’” of the boundary condi-
tions for the harmonic functiens @ (z), ¥ (2) and the Helmholtz type function F.

However, for the half-plane the boundary conditions may be unraveled, i.e., the boundary
value problem to determine ¢ (z), ¥ (2) may be formulated separately, and to determine F
separately. Let us show this by an example of the first fundamental problem of the asymme-
tric theory of slasticity, whose boundary value problems have the form

- —— 8 /dF ar
N () — iT () = @ (2) -+ D (2) + 20 (2) + ¥ (2) + -5;(7_”——& -5;)11:0 -

_ ar
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Here N (x), T (x), M (x) are the boundary values of 0, 0., [1,,, respectively, where it
is considered that the body occupies the lower half-plane. The first relationship of (3.1) is
the boundary value problem of the ordinary theory of elasticity to determine D and ¥, if it
is assumed that the boundary value of the last member of this equation is known. We find
therefrom

oo 3.2)
1 ¢ N@—il @
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(X
Substituting (3.2) into the second relationship of (3.1), we obtain
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Condition (3.3) is also a boundary condition to determine F. Knowledge of the latter re-
duces the solution of the first fundamental problem of the asymmetric theory of elasticity
to the solution of the fundamental problem of the ordinary theory of elasticity, but with
other boundary conditions, as is seen from the first relationship of (3.1). Analogously, the
boundary conditions for the remaining boundary value problems of the asymmetric theory of
elasticity for a half-plane may be unraveled. Let us present the form of the boundary con-
ditions to find F when on the contour are given:

the displacements and the angle of rotation u (x), v (%), Q(x)

LT F % 20 e ,
Lax—f)y__W+TF]u=o =%[79(z)—l(q’o—%)J (3.4)
the stresses and the angle of rotation N (x), T (x), {}(x)

forr  owFe A T = 28 (3.5)

the displacements and the micromoments u (x), v{x), M (x)

[ BF  PF* % 6F]u=0 =n[71v—M(x)—-((Po" +$o~)] (3.6)

oz%oy T 98 T v oy

Here (po and 9, denotes throughout the solution of the corresponding problems of the or-
dinary theory of elasticity.

The obtained boundary conditions (3.3) to (3.6) for F differ essentially from the known
boundary value problems for Helmholtz type equations. Finding F with the boundary condi-
tions (3.3) to (3.6) is a specific difficulty of the solution of problems of the asymmetric
theory of elasticity and requires special consideration.
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